Spotting
 Timeline
 Travel Tip
 Trip
 Race
 Social
 Greeting
 Poll
 Img
 PNR
 Pic
 Blog
 News
 Conf TL
 RF Club
 Convention
 Monitor
 Topic
 #
 Rating
 Correct
 Wrong
 Stamp
 PNR Ref
 PNR Req
 Blank PNRs
 HJ
 Vote
 Pred
 @
 FM Alert
 FM Approval
 Pvt
Forum Super Search
 ↓ 
×
HashTag:
Freq Contact:
Member:
Posting Date From:
Posting Date To:
Blog Category:
Train Type:
Train:
Station:
Pic/Vid:   FmT Pic:   FmT Video:
Sort by: Date:     Word Count:     Popularity:     
Public:    Pvt: Monitor:    Topics:    

Search
  Go  
dark modesite support
 
Thu Apr 18 12:57:19 IST
Home
Trains
ΣChains
Atlas
PNR
Forum
Quiz
Topics
Gallery
News
FAQ
Trips
Login
Post PNRPost BlogAdvanced Search

Blog Entry# 4942080
Posted: Apr 18 2021 (10:34)

No Responses Yet
Rail Fanning
7176 views
2

Apr 18 2021 (10:34)  
KishorWhoAJE2here~
KishorWhoAJE2here~   8564 blog posts
Entry# 4942080              
click here

Rack Railway : for Hilly Slopes and Steep ascent/descent...

A rack railway (also rack-and-pinion railway, cog railway, or cogwheel railway) is a steep grade railway with a toothed rack rail, usually
...
more...
between the running rails. The trains are fitted with one or more cog wheels or pinions that mesh with this rack rail. This allows the trains to operate on steep grades above 10%, which is the maximum for friction-based rail. Most rack railways are mountain railways, although a few are transit railways or tramways built to overcome a steep gradient in an urban environment.

The first cog railway was the Middleton Railway between Middleton and Leeds in West Yorkshire, England, United Kingdom, where the first commercially successful steam locomotive, Salamanca, ran in 1812. This used a rack and pinion system designed and patented in 1811 by John Blenkinsop.[1]

The first mountain cog railway was the Mount Washington Cog Railway in the U.S. state of New Hampshire, which carried its first fare-paying passengers in 1868. The track was completed to reach the summit of Mount Washington in 1869. The first mountain rack railway in continental Europe was the Vitznau-Rigi-Bahn on Mount Rigi in Switzerland, which opened in 1871. Both lines are still running.

The first successful rack railway in the United States was the Mount Washington Cog Railway, developed by Sylvester Marsh.[3] Marsh was issued a U.S. patent for the general idea of a rack railway in September 1861,[4] and in January 1867 for a practical rack where the gear teeth take the form of rollers arranged like the rungs of a ladder between two L-shaped wrought-iron rails.[5] The first public trial of the Marsh rack on Mount Washington was made on August 29, 1866, when only one quarter of a mile (402 meters) of track had been completed. The Mount Washington railway opened to the public on August 14, 1868.[6] The pinion wheels on the locomotives have deep teeth that ensure that at least two teeth are engaged with the rack at all times; this measure helps reduce the possibility of the pinions riding up and out of the rack.[1]

Fell (1860s)
Main article: Fell mountain railway system
The Fell mountain railway system, developed in the 1860s, is not strictly speaking a rack railway, since there are no cogs with teeth. Rather, this system uses a smooth raised centre rail between the two running rails on steep sections of lines that is gripped on both sides to improve friction. Trains are propelled by wheels or braked by shoes pressed horizontally onto the centre rail, as well as by means of the normal running wheels.

Riggenbach (1871)

The Riggenbach rack system
The Riggenbach rack system was invented by Niklaus Riggenbach working at about the same time as, but independently from Marsh. Riggenbach was granted a French patent in 1863 based on a working model which he used to interest potential Swiss backers. During this time, the Swiss Consul to the United States visited Marsh's Mount Washington Cog Railway and reported back with enthusiasm to the Swiss government. Eager to boost tourism in Switzerland, the government commissioned Riggenbach to build a rack railway up Mount Rigi. Following the construction of a prototype locomotive and test track in a quarry near Bern, the Vitznau-Rigi-Bahn opened on 22 May 1871.[1]

The Riggenbach system is similar in design to the Marsh system. It uses a ladder rack, formed of steel plates or channels connected by round or square rods at regular intervals. The Riggenbach system suffers from the problem that its fixed ladder rack is more complex and expensive to build than the other systems.

Following the success of the Vitznau-Rigi-Bahn, Riggenbach established the Maschinenfabrik der Internationalen Gesellschaft für Bergbahnen (IGB) – a company that produced rack locomotives to his design.[1]

Abt (1882)

Abt rack system

Abt rack system used on the Snowdon Mountain Railway.

Traction transition section
The Abt system was devised by Carl Roman Abt, a Swiss locomotive engineer. Abt worked for Riggenbach at his works in Olten and later at his IGB rack locomotive company. In 1885, he founded his own civil engineering company.[1]

During the early 1880s, Abt worked to devise an improved rack system that overcame the limitations of the Riggenbach system. In particular, the Riggenbach rack was expensive to manufacture and maintain and the switches were complex. In 1882, Abt designed a new rack using solid bars with vertical teeth machined into them. Two or three of these bars are mounted centrally between the rails, with the teeth offset.[7] The use of multiple bars with offset teeth ensures that the pinions on the locomotive driving wheels are constantly engaged with the rack.[8] The Abt system is cheaper to build than the Riggenbach because it requires a lower weight of rack over a given length. However the Riggenbach system exhibits greater wear resistance than the Abt.[1]

Abt also developed a system for smoothing the transition from friction to rack traction, using a spring-mounted rack section to bring the pinion teeth gradually into engagement.[9]

The first use of the Abt system was on the Harzbahn in Germany, which opened in 1885.[1] The Abt system was also used for the construction of the Snowdon Mountain Railway in Wales from 1894 to 1896.[10]

The pinion wheels can be mounted on the same axle as the rail wheels (as in the picture at left), or driven separately. The steam locomotives on the Mount Lyell Mining and Railway Company had separate cylinders driving the pinion wheel, as do the "X"-class locomotives on the Nilgiri Mountain Railway.

The steepest gradient on the rack section of Mount Lyell Mining and Railway Company was 1 in 15 (6.67%),[11]
The steepest gradient on the rack section of the Mount Morgan Railway was 1 in 16.5 (6.06%).[12]
Strub (1896)
The Strub rack system was invented by Emil Strub in 1896. It uses a rolled flat-bottom rail with rack teeth machined into the head approximately 100 mm (3.9 inches) apart. Safety jaws fitted to the locomotive engage with the underside of the head to prevent derailments and serve as a brake.[1] Strub's U.S. patent, granted in 1898, also includes details of how the rack rail is integrated with the mechanism of a turnout.[13]

The best-known use of the Strub system is on the Jungfraubahn in Switzerland.[1] The 7 1⁄4 in (184 mm) gauge Beamish Cog Railway at the Beamish Museum is the only rack railway in England. It has a 150 feet (46 m)-long viaduct and climbs at a maximum gradient of 1 in 8 or 12.5% climb.[citation needed]

Strub is the simplest rack system to maintain and has become increasingly popular.[14]


The Strub rack system



Rack railway track on the Panoramique des Dômes using the Strub system rack

Locher (1889)

Locher rack system

Locher Rack system (seen from above)
The Locher rack system, invented by Eduard Locher, has gear teeth cut in the sides rather than the top of the rail, engaged by two cog wheels on the locomotive. This system allows use on steeper grades than the other systems, whose teeth could jump out of the rack. It is used on the Pilatus Railway.

Locher set out to design a rack system that could be used on gradients as steep as 1 in 2 (50%). The Abt system — the most common rack system in Switzerland at the time — was limited to a maximum gradient of 1 in 4 (25%). Locher showed that on steeper grade, the Abt system was prone to the driving pinion over-riding the rack, causing potentially catastrophic derailments, as predicted by Dr. Abt. To overcome this problem and allow a rack line up the steep sides of Mt. Pilatus, Locher developed a rack system where the rack is a flat bar with symmetrical, horizontal teeth. Horizontal pinions with flanges below the rack engage the centrally-mounted bar, both driving the locomotive and keeping it centered on the track.

This system provides very stable attachment to the track, also protecting the car from toppling over even under the most severe crosswinds. Such gears are also capable of leading the car, so even flanges on running wheels are optional. The biggest shortcoming of the system is that the standard railway switch is not usable, and a transfer table or other complex device must be used where branching of the track is needed.

Following tests, the Locher system was deployed on the Pilatus Railway, which opened in 1889. No other public railway uses the Locher system, although some European coal mines use a similar system on steeply graded underground lines.[1]

Morgan (1900)

The non-powered variant of the Morgan rack, from the 1919 Goodman catalog

A rack-powered Goodman locomotive on a 16% grade in a coal mine near Everist, Iowa.
In 1900, E. C. Morgan of Chicago received a patent on a rack railway system that was mechanically similar to the Riggenbach rack, but where the rack was also used as a third rail to power the electric locomotive.[15] Morgan went on to develop heavier locomotives[16] and with J. H. Morgan, turnouts for this system.[17] In 1904, he patented a simplified but compatible rack, where the teeth on the engine pinions engaged square holes punched in a bar-shaped center rail.[18] J. H. Morgan patented several alternative turnout designs for use with this rack system.[19][20] Curiously, Morgan recommended an off-center rack in order to allow clear passage for pedestrians and animals walking along the tracks.[15] Some photos of early Morgan installations show this.[21] A simplified rack mounting system could be used when the Morgan rack was not used for third-rail power[22] and the Morgan rack offered interesting possibilities for street railways.[23] The Morgan rack was good for grades of up to 16 percent.[24]

The Goodman Equipment Company began marketing the Morgan system for mine railways, and it saw widespread use, particularly where steep grades were encountered underground.[25][26][27] By 1907, Goodman had offices in Cardiff, Wales, to serve the British market.[21] Between 1903 and 1909, the McKell Coal and Coke company in Raleigh County, West Virginia, installed 35,000 feet (10,700 m) of Morgan rack/third-rail track in its mines.[28] Between 1905 and 1906, the Mammoth Vein Coal Company installed 8,200 feet (2,500 m) of powered rack in two of its mines in Everist, Iowa, with a maximum grade of 16%.[29] The Donohoe Coke Co. of Greenwald, Pennsylvania had 10,000 feet (3,050 m) of Goodman rack in its mine in 1906.[30] The Morgan system saw limited use on one common carrier railroad in the United States, the Chicago Tunnel Company, a narrow gauge freight carrier that had one steep grade in the line up to their surface disposal station on the Chicago lakefront.[31]

Lamella

Joint between Riggenbach and Lamella

Skitube Alpine Railway middle track explained
The Lamella system (also known as the Von Roll system) was developed by the Von Roll company after the rolled steel rails used in the Strub system became unavailable. It is formed from a single blade cut in a similar shape to the Abt system, but typically wider than a single Abt bar. The Lamella rack can be used by locomotives designed for use on the Riggenbach or the Strub systems, so long as the safety-jaws that were a feature of the original Strub system are not used. Some railways use racks from multiple systems; for example, the St. Gallen Gais Appenzell Railway in Switzerland has sections of Riggenbach, Strub and Lamella rack.[1]

Most of the rack railways built from the late 20th century onwards have used the Lamella system.[1]

Rack-and-adhesion systems / Pure rack systems
Rack-and-adhesion systems use the cog drive only on the steepest sections and elsewhere operate as a regular railway. Others, the steeper ones, are rack-only. On the latter type, the locomotives' wheels are generally free-wheeling and despite appearances do not contribute to driving the train. In this case the racks continue also in the horizontal parts, if any.

Switches

Railroad switch on a rack railway. The turnout uses Lamella rack rails, but the overall design was pioneered by Strub. The track outside the turnout uses Riggenbach rack rails. (Schynige Platte Railway, Switzerland)

Mount Washington Cog Railway Operators, 2000

An automatic hydraulic turnout of Mount Washington Cog Railway
Rack railway switches are as varied as rack railway technologies, for optional rack lines such as the Zentralbahn in Switzerland and the West Coast Wilderness Railway in Tasmania it is convenient to only use switches on sections flat enough for adhesion (for example, on a pass summit). Other systems which rely on the rack for driving (with the conventional rail wheels undriven) such as the Dolderbahn in Zurich, Štrbské Pleso in Slovakia and the Schynige Platte rack railway instead must switch the rack rail. The Dolderbahn switch works by bending all three rails, an operation that is performed every trip as the two trains pass in the middle.

The geometry of the rack system has a large impact on the construction of turnouts. If the rack is elevated above the running rails, there is no need to interrupt the running rails to allow passage of the driving pinions of the engines. Strub explicitly documented this in his U.S. patent.[13] Strub used a complex set of bell-cranks and push-rods linking the throw-rod for the points to the two throw-rods for the moving rack sections. One break in the rack was required to select between the two routes, and a second break was required where the rack rails cross the running rails. Turnouts for the Morgan Rack system were similar, with the rack elevated above the running rails. Most of the Morgan turnout patents included movable rack sections to avoid breaks in the rack,[17][20] but because all Morgan locomotives had two linked drive pinions, there was no need for a continuous rack. So long as the breaks in the rack were shorter than the distance between the drive pinions on the locomotive, the rack rail could be interrupted wherever there was need to cross over a running rail.[15]

Turnouts are far more complex when the rack is at or below the level of the running rails. Marsh's first rack patent shows such an arrangement,[4] and the original Mount Washington Cog Railway he built had no turnouts. It was not until 1941 that a turnout was constructed on this line.[32] There were more turnouts built for the line but all were hand operated. In 2003, a new automatic hydraulic turnout was developed and built at the base as a prototype. With the success of the new turnout, more new automatic hydraulic turnouts were built to replace the hand-operated ones. The new turnouts installed on the Mount Washington line in 2007 are essentially transfer tables.[33] The Locher rack also requires transfer tables.

Cog locomotives

Vertical boiler locomotive of the Vitznau–Rigi Railway

"Old Peppersass" of the Mt. Washington Cog Railway, USA

Schneeberg cog railway steam locomotive, with tilted boiler, on level track

Rittnerbahn early electric cog locomotive and carriage
Originally almost all cog railways were powered by steam locomotives. The steam locomotive needs to be extensively modified to work effectively in this environment. Unlike a Diesel locomotive or electric locomotive, the steam locomotive only works when its powerplant (the boiler, in this case) is fairly level. The locomotive boiler requires water to cover the boiler tubes and firebox sheets at all times, particularly the crown sheet, the metal top of the firebox. If this is not covered with water, the heat of the fire will soften it enough to give way under the boiler pressure, leading to a catastrophic failure.

On rack systems with extreme gradients, the boiler, cab and general superstructure of the locomotive are tilted forward relative to the wheels so that they are more or less horizontal when on the steeply graded track. These locomotives often cannot function on level track, and so the entire line, including maintenance shops, must be laid on a gradient. This is one of the reasons why rack railways were among the first to be electrified and most of today's rack railways are electrically powered. In some cases, a vertical boiler can be used that is less sensitive for the track gradient.

On a rack-only railroad, locomotives are always downward of their passenger cars for safety reasons: the locomotive is fitted with powerful brakes, often including hooks or clamps that grip the rack rail solidly. Some locomotives are fitted with automatic brakes that apply if the speed gets too high, preventing runaways. Often there is no coupler between locomotive and train since gravity will always push the passenger car down against the locomotive. Electrically powered vehicles often have electromagnetic track brakes as well.

The maximum speed of trains operating on a cog railway is very low, generally from 9 to 25 kilometres per hour (5.6 to 15.5 mph) depending on gradient and propulsion method. Because the Skitube has gentler gradients than typical, its speeds are higher than typical.

Rack railways in fiction
The Culdee Fell Railway is a fictional cog railway on the Island of Sodor in The Railway Series by Rev. W. Awdry. Its operation, locomotives and history are based on those of the Snowdon Mountain Railway. It is featured in the book Mountain Engines.

Translate to English
Translate to Hindi

Travel SAFE

1. RailFanning does NOT MEAN dangerous pics/videos.
2. Doorplating pics/youtube videos are strictly FORBIDDEN in IRI.
3. Take plenty of food pics and other safe pics.
4. Write human interest narratives to make the pics interesting.
5. Enjoy blogging and travelling SAFELY.

REMEMBER: YOUR LIFE is the most precious thing, NOT RailFanning.

Leading Polls

2037976 ★★★ 63ELSG^~
6007860 ★★★ 63RailwayFiles~
4251346 ★★★ 125AvishekRay~
3242050 ★★★ 348~

Top Trending Posts

6034342 ★★★ 46WAP7NFRMLDT~
6033961 ★★ 14riz339~
6034168  8harshit~
5949493  6SultanpurJnSLN~
6025462 ★★★ 77SaurabhDubey^~
6022115  10kirk781~
3712431 ★★ 13Arnab_K~
6033482 ★★★ 26MeghaSyam^~
4956030 ★★★ 133Rajdhani_in_KG_lin...
6034112 ★★ 16Snehashish_railfan...
6034373  8SreenathSree^~
6031461 ★★★ 48AdittyaaSharma^~
6032271 ★★★ 24Snehashish_railfan...
6032343 ★★ 12SteelCityRF^~
6032501 ★★ 22hrid22~
6033374 ★★ 17hrid22~
6033963  6riz339~
6033313 ★★ 12Deepanjan^~
4085430 ★★★ 69ELSG^~
6032510 ★★ 13SHIV_SHANKAR^~
4875671 ★★★ 33ELSG^~
6031661 ★★ 15Krishna.Kushwaha^~
6029603 ★★★ 47SHUBHAMNFR
6030825 ★★★ 30Sameer2905^~
6018017 ★★★ 26The_unknown_rail
6003133  6Hkkoraput
6005256  6Hkkoraput
6032711 ★★ 13AmiteshPandey
2037976  11ELSG^~
6032049  7WAP7NFRMLDT~

Rail News

New Trains

Site Announcements

  • Entry# 5648027
    Mar 01 2023 (12:44AM)


    In response to past confusions with Train/Station updates and resulting fights and controversies, the following clear and objective guidelines are being issued, with no room for any arguments or debates about validity. Also, included, some other changes with respect to Ratings. 1. All Red Ratings will require further explanation. Red Ratings won't...
  • Entry# 5388512
    Jun 24 2022 (08:45AM)


    As announced previously, there are a few changes coming to IRI user accounts, based on past practices. 1. As before, you will be able to quickly DELETE your IRI User account at ANY time. However, the menu option for this was hidden in the profile page, and could not easily be located....
  • Entry# 5148000
    Nov 29 2021 (06:40AM)


    A new feature will be released soon, whereby you can follow blogs tagged with specific Trains & Stations. If you have already posted blogs tagged with some Train/Station, then you will be set to automatically follow that Train/Station. Thereafter, any future news/blogs tagged with those Trains/Stations will be marked to your...
  • Entry# 5093784
    Oct 13 2021 (07:04AM)


    These days, every other day, we are getting requests from members to allow email login to their FB-based IRI account. 10 years ago, we had given the option for users to login through FaceBook - in retrospect, this was a mistake. These days, apparently, users are quitting FaceBook in droves because...
  • Entry# 4906979
    Mar 14 2021 (01:12AM)


    Followup to: Fmt Changes The new version of FmT 2.0 will soon be here - in about 2 weeks. As detailed in the previous announcement, many of the old FmT features like Train TT, Speedometer, Geo Location, etc. will be REMOVED. It will be a bare-bones simple app, focused on trip blogging. It...
  • Entry# 4898771
    Mar 06 2021 (10:33PM)


    There are some changes coming to FMT. Many of the features of FMT, like station arrival, TT, speed, geo, passing times, station time, etc. are ALREADY available in OTHER railway apps. So all of these features will be REMOVED. We'll have ONLY BLOGGING - quick upload of pics/videos/audio, etc. You may attach...
Scroll to Top
Scroll to Bottom
Go to Mobile site
Important Note: This website NEVER solicits for Money or Donations. Please beware of anyone requesting/demanding money on behalf of IRI. Thanks.
Disclaimer: This website has NO affiliation with the Government-run site of Indian Railways. This site does NOT claim 100% accuracy of fast-changing Rail Information. YOU are responsible for independently confirming the validity of information through other sources.
India Rail Info Privacy Policy